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Measures of Entanglement and Magic

= Bipartition in a qubit system. A|B
= Reduced density matrix ¢4 = trp | )}

= von Neumann entropy:

S1(ta) = —tr(alogtha)
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Measures of Entanglement and Magic

= Bipartition in a qubit system. A|B = Group of Pauli operators P € P,
= Reduced density matrix ¢4 = trp | )} = Pauli subgroup stabilizing 1)
= von Neumann entropy: Gy ={P: Ply) =)}

= Stabilizer nullity

S1(a) = —tr(palogia)
v() =n —log|Gy|
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Entanglement manipulation

Task: via Alice and Bob want to distill a Task: via Alice and Bob want to distill a
Bell pair from an entangled state |) state [¢))

0 LOCC @

= For pure states the optimal number of Bell = For pure states the optimal number of Bell pair
pair is the von Neumann entropy is the von Neumann entropy

M, =5, (d)A) M =5 (wA)
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Stabilizer States

Consider k mutually commuting, and independent Pauli operators S = {Pl, - ,Pk}.

I+ P
o= —

PcS

S is the generating set of the stabilizer group GG (abelian subgroup of P,,) associated with o.

G| =25 = 2F

Pure stabilizer states |o) VP € G, P|o) = |o).

All the properties of o can be determined by looking at S.
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Entanglement for stabilizer states

= Entanglement is completely determined by 2
S. Py
» Sy={PcS|P=Pys®Ip} .
« S4={PcS|P=1I,&Ps} B
» Syp={P € S|P¢S4USp}
Example
00)+11
_ |Sasl [EPR) = 2

Sl(O'A) 9
Sa = {}7SB — {}’SAB - {XXa ZZ}

S (tr5(|JEPRYEPR/)) = 1

Fattal et al., Entanglement in the stabilizer formalism, ArXiv:quant-ph/0406168
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Magic-States = v-compressible states

= Consider a state |¢) with stabilizer nullity v.

= We can associate a stabilizer group G generated by S.

Ztr hi)h; Hﬂ

PecS

= |1)) is v-compressible because it can always be written as |¢) = C(|0),—, ® |¢),)

= Fact: the stabilizer group G can be learned efficiently.

Leone et al., Learning t-doped stabilizer states, Quantum 8, 1361 (2024). ® |7 0f 17



Learning algorithm for &

Algorithm:

Input O((n + log(1/6))e) copies of |¢), €,6 € (0,1)

Output Stabilizer set S.

1. Perform Bell difference Sampling. The span of the samples is St

2. § = Ker(S+) (Gaussian Elimination)

i

(=]
SN
I

-

Grewal et al., Efficient Learning of Quantum States Prepared With Few Non-Clifford Gates, ArXiv: 230 5 | s or 17
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Learning algorithm for &

Algorithm:

Input O((n + log(1/6))e) copies of |¢), €,6 € (0,1)

Output Stabilizer set S.

1. Perform Bell difference Sampling. The span of the samples is St

2. § = Ker(S+) (Gaussian Elimination)

= The group G = (S) contains G.
= |1)) is e-close in trace distance to some state with a stabilizer group G.

= Runtime O(n?(n +log(1/6))e)

Grewal et al., Efficient Learning of Quantum States Prepared With Few Non-Clifford Gates, ArXiv: 230 5 | s or 17
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Stabilizer Entanglement

= Let |¢) be a state with stabilizer nullity v, stabilizer group G and generating set S.

= One can always decompose S on the bipartition A|B: S = S4 U Sg U S4B
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Stabilizer Entanglement

= Let |¢) be a state with stabilizer nullity v, stabilizer group G and generating set S.

= One can always decompose S on the bipartition A|B: S = S4 U Sg U S4B

Stabilizer Entanglement E (1 4) = _‘S;B|

Bounds with entanglement entropy

E(¢a) — g < S1(¢p4) < E(tha) +g

= E(14) can be estimated efficiently O(n?)

= v can be estimated efficiently O(n)
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Entanglement vs Magic-dominated

S1(a) = w(v)

Entanglement S,

O(log

0]
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Entanglement vs Magic-dominated

51(Y4) = w(v) S1(¥a) = O(v)

a H
£ ED
£ v
) = 9(n)
on
g MD
'5 ? i t-doped

g Matrix product states

= — v-compressible
O(logn)
Magic v

= Matrix Product States (MPS) are magic-dominated but allow potential efficient manipulation.
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Entanglement vs Magic-dominated
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Matrix product states

> v-compressible

d(logl; n)
Magic v

= Matrix Product States (MPS) are magic-dominated but allow potential efficient manipulation.

= v-compressible states (v = o(n)) occupy a vanishing fraction of the Hilbert space.

= Entanglement-dominated phase is typical for v-compressible and t-doped states.
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Efficient entanglement characterization for entanglement-
dominated tasks

= General Case: Entanglement characterization requires exponentially many measurements for large
nA.

= Example: Testing for volume law f(n4) ~ n4 involves resolving tr(¢%) = exp(—Q(n4)).
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Efficient entanglement characterization for entanglement-
dominated tasks

= General Case: Entanglement characterization requires exponentially many measurements for large
nA.

= Example: Testing for volume law f(n4) ~ n4 involves resolving tr(¢%) = exp(—Q(n4)).
» Task: Aim is to check whether S1(¥4) = O(f(ny4)).
= 1) is entanglement dominated iff E(¢4) = w(v)
= Given a entanglement class f(n4), if E(¥4) = f(na) then S1(v4) = cf(na) + o(f(na4)).
» Therefore, one estimates S1(14) up to a o(1) relative error.
= Notice that, the above procedure holds even for states with v = o(n).

= Example: Volume Law vs Sub-Volume Law

» If f(na) =m4g = Volumelaw:c=©(1). Sub-volume law: ¢ = o(1). ® 111 0f 17



Efficient entanglement distillation for entanglement-dominated
task

Theorem There exists a bipartite Clifford unitary that distills a number of Bell pair equals to
M = E($a) —v/2

which, for entanglement dominated states, is asymptotically (in n) optimal: M, /S1(4) =1 —
o(1). Moreover, the unitary, can be found by O(n) queries to |1).
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Efficient entanglement distillation for entanglement-dominated
task

Theorem There exists a bipartite Clifford unitary that distills a number of Bell pair equals to
M = E($a) —v/2

which, for entanglement dominated states, is asymptotically (in n) optimal: M, /S1(4) =1 —
o(1). Moreover, the unitary, can be found by O(n) queries to |1).

Proof Sketch: S =S4 U S U Ssp,

S| >n—-v
= We can complete the stabilizer group .S to a maximal one S¢, describing a stabilizer state |S¢).
= For S° there exists a unitary U4 ® Up Clifford that distills up to | S z|/2 Bell pairs.

= Applying the same unitary on |v), it transforms S — S’ obtaining M Bell pairs:

M, > |S45| = v = E(¢a) —v/2
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Efficient entanglement dilution for entanglement-dominated task

Theorem For any state |¢) in the ED phase there exists a stabilizer LOCC protocol for dilution that
requires a number of Bell pairs equal to

M_=E(a)+v/2

which, for entanglement dominated states, is asymptotically (in n) optimal: M_ /S1(v4) =1+
o(1), and v bits of classical communication.
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Efficient entanglement dilution for entanglement-dominated task

Theorem For any state |¢) in the ED phase there exists a stabilizer LOCC protocol for dilution that
requires a number of Bell pairs equal to

M_ = E(¢4) +v/2

which, for entanglement dominated states, is asymptotically (in n) optimal: M_ /S1(v4) =1+
o(1), and v bits of classical communication.

Proof Sketch : A

» B runs locally the distillation protocol.
Obtaining the state |o”)

[

= Teleport of v/2 qubits of o) to A.

= Application of local Cliffords on A and B.
Equivalent to revert distillation. B

ANANERL RNARER

[
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No-go for magic dominated states

Theorem Any efficient state-agnostic protocol that can estimate S1 (1 4) within w(1) relative error
for all MD states. It can distills at most a fraction of o(1) Bell pairs from a magic-dominated state,
and diluite more than a fraction of w(1) Bell pairs from a magic-dominated state.
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No-go for magic dominated states

Theorem Any efficient state-agnostic protocol that can estimate S1 (1 4) within w(1) relative error
for all MD states. It can distills at most a fraction of o(1) Bell pairs from a magic-dominated state,
and diluite more than a fraction of w(1) Bell pairs from a magic-dominated state.

Proof Sketch: Pseudorandom states encoded as magic-states

= Consider the following magic dominated state |¢)) = |0),_, ® |p4p),, with v = O(log®(n)) with
c>1

= Two possible choices either |¢4p), is an Haar random state or |¢4p5), is a pseudo entangled state

= Haar random states have maximal entropy of entanglement S (¢%5) ~ ©(log® n), while

S1(php) = ©(log® n), an efficient algorithm that achieves M, /S; = (1) fraction of distillable
Bell pairs would distinguish pseudo random states from Haar. Consequently, the maximal number
of extractable Bell pairs obeys M. /S; = o(1)
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Reversibility Ratio defined as M. /M_

= Key Results

= M_/M_=1-—0(1) for ED states
= M_/M_ = o(1) for MD states

= Proof outiline
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Computational phase transition in entanglement manipulation

Reversibility Ratio defined as M. /M_

= Key Results
= M_/M_=1-—0(1) for ED states

= M_/M_ = o(1) for MD states

= Proof outiline

= Distillation: M, > S;1(¢; A|B) —v/2. Dilution: M_ < E(¢; A|B) +v/2.
= Significance of Reversibility Ratio
= ED states: Reversible entanglement manipulation.

= MD states: Irreversible entanglement manipulation.
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Robustness of phases

= Question: How robust are ED and MD phases to perturbations.

= Stabilizer nullity is sensitive to perturbation, but we can make it robust.
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Robustness of phases

= Question: How robust are ED and MD phases to perturbations.

= Stabilizer nullity is sensitive to perturbation, but we can make it robust.

V() = min{v(e) : [[[Y)Xy] — [#)}][l1 <€}

» ¢-ED and e-MD phases
= [the) = argmin{v(|§)): [|[¥)X¥| — |p)}¢[|l1 < e}
. £ 51 (ten) = w(v(|e))) 1 81 (Yea) = O(v(|1e)))

= Results on ED-phase and MD-phase can be generalized to this e-version up to error €.

= Proof idea: Look at the e-ball, and then use of Fannes inequality.
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Future directions

= Generalizing the result to a more robust measure of magic?
= A Computational phase transition in magic-state distillation?

= From pseudomagic, we know that there is no-agnostic and efficient algorithm that distill more
than O(log M (1)) magic states for general states.

= [s the magic-dominated phase useful for agnostic and efficient magic-state distillation?

= Generalization to the CV case. Analizing the connection between non-Gaussianity and
Entanglement.
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Future directions

= Generalizing the result to a more robust measure of magic?
= A Computational phase transition in magic-state distillation?

= From pseudomagic, we know that there is no-agnostic and efficient algorithm that distill more
than O(log M (1)) magic states for general states.

= [s the magic-dominated phase useful for agnostic and efficient magic-state distillation?

= Generalization to the CV case. Analizing the connection between non-Gaussianity and
Entanglement.

Thanks for your attention!
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