
Magic-induced computational separation in
entanglement theory

Salvatore F.E. Oliviero

Talk based on: ArXiv: 2403.19610

MBQM 2024

Joint work with:

Andi Gu Lorenzo Leone

  | 1 of 17



Motivations

  | 2 of 17



Motivations

What is the difference between high magic entanglement
and low magic entanglement?

  | 2 of 17



Motivations

What is the difference between high magic entanglement
and low magic entanglement?

For states with no magic, estimate entanglement is easy.

  | 2 of 17



Motivations

What is the difference between high magic entanglement
and low magic entanglement?

For states with no magic, estimate entanglement is easy.

Operational approach: let us study the difference for
entanglement characterization and manipulation tasks.
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Measures of Entanglement and Magic

How do we measure entanglement?

Bipartition in a qubit system. 

Reduced density matrix 

von Neumann entropy:

A∣B

ψ  =A tr  ∣ψ⟩⟨ψ∣B

S  (ψ  ) =1 A − tr(ψ  log ψ  )A A
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Measures of Entanglement and Magic

How do we measure entanglement?

Bipartition in a qubit system. 

Reduced density matrix 

von Neumann entropy:

How do we measure magic?

Group of Pauli operators 

Pauli subgroup stabilizing

Stabilizer nullity

A∣B

ψ  =A tr  ∣ψ⟩⟨ψ∣B

S  (ψ  ) =1 A − tr(ψ  log ψ  )A A

P ∈ P  n

∣ψ⟩

G  =ψ {P : P ∣ψ⟩ = ∣ψ⟩}

ν(ψ) = n − log ∣G ∣ψ
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Entanglement manipulation

Task: via LOCC Alice and Bob want to distill a
Bell pair from an entangled state 

For pure states the optimal number of Bell

pair is the von Neumann entropy

Task: via LOCC Alice and Bob want to distill a
state 

For pure states the optimal number of Bell pair

is the von Neumann entropy

∣ψ⟩

M  =+ S  (ψ  )1 A

∣ψ⟩

M  =− S  (ψ  )1 A
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Stabilizer States

Consider  mutually commuting, and independent Pauli operators .

 is the generating set of the stabilizer group  (abelian subgroup of ) associated with .

Pure stabilizer states , .

All the properties of  can be determined by looking at .

k S = {P  , … ,P  }1 k

σ =   

P∈S

∏
2

I + P

S G P  n σ

∣G∣ = 2 =∣S∣ 2k

∣σ⟩ ∀P ∈ G P ∣σ⟩ = ∣σ⟩

σ S
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Entanglement for stabilizer states

Entanglement is completely determined by
.

Example

Fattal et al., Entanglement in the stabilizer formalism, ArXiv:quant-ph/0406168

S

S  =A {P ∈ S∣P = P  ⊗A I  }B

S  =A {P ∈ S∣P = I  ⊗A P  }B

S  =AB {P ∈ S∣P ∈/ S  ∪A S  }B

S  (σ  ) =1 A  

2
∣S  ∣AB ∣EPR⟩ =  

 2
∣00⟩+∣11⟩

S  =A {},S  =B {},S  =AB {XX,ZZ}

S  (tr (∣EPR⟩⟨EPR∣)) =1 B 1
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Magic-States -compressible states

Consider a state  with stabilizer nullity .

We can associate a stabilizer group  generated by .

 is -compressible because it can always be written as 

Fact: the stabilizer group  can be learned efficiently.

= ν

∣ψ⟩ ν

G S

∣ψ⟩⟨ψ∣ =  tr(h  ψ)h    

i=1

∑
4ν

i i

P∈S

∏
2

I + P

∣ψ⟩ ν ∣ψ⟩ = C(∣0⟩ ⊗n−ν ∣ϕ⟩  )ν

G

Leone et al., Learning t-doped stabilizer states, Quantum 8, 1361 (2024).   | 7 of 17



Learning algorithm for 
Algorithm:
Input  copies of , 

Output Stabilizer set .

��� Perform Bell difference Sampling. The span of the samples is 

���  (Gaussian Elimination)

G

O((n + log(1/δ))ϵ) ∣ψ⟩ ϵ, δ ∈ (0, 1)
Ŝ

S⊥

S = Ker(S )⊥

Grewal et al., Efficient Learning of Quantum States Prepared With Few Non-Clifford Gates, ArXiv: 2305.13409.  | 8 of 17
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Learning algorithm for 
Algorithm:
Input  copies of , 

Output Stabilizer set .

��� Perform Bell difference Sampling. The span of the samples is 

���  (Gaussian Elimination)

The group  contains .

 is -close in trace distance to some state with a stabilizer group 

Runtime 

G

O((n + log(1/δ))ϵ) ∣ψ⟩ ϵ, δ ∈ (0, 1)
Ŝ

S⊥

S = Ker(S )⊥

≡Ĝ ⟨ ⟩Ŝ G

∣ψ⟩ ϵ .Ĝ

O(n (n +2 log(1/δ))ϵ)

Grewal et al., Efficient Learning of Quantum States Prepared With Few Non-Clifford Gates, ArXiv: 2305.13409.  | 8 of 17



Stabilizer Entanglement

  | 9 of 17



Stabilizer Entanglement

Let  be a state with stabilizer nullity , stabilizer group  and generating set .

One can always decompose  on the bipartition A|B: 

∣ψ⟩ ν G S

S S = S  ∪A S  ∪B S  AB
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Let  be a state with stabilizer nullity , stabilizer group  and generating set .

One can always decompose  on the bipartition A|B: 

Stabilizer Entanglement 

Bounds with entanglement entropy

∣ψ⟩ ν G S

S S = S  ∪A S  ∪B S  AB

E(ψ  ) =A  2
∣S  ∣AB

E(ψ  ) −A  ≤
2
ν

S  (ψ  ) ≤1 A E(ψ  ) +A  

2
ν
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Stabilizer Entanglement

Let  be a state with stabilizer nullity , stabilizer group  and generating set .

One can always decompose  on the bipartition A|B: 

Stabilizer Entanglement 

Bounds with entanglement entropy

 can be estimated efficiently 

 can be estimated efficiently 

∣ψ⟩ ν G S

S S = S  ∪A S  ∪B S  AB

E(ψ  ) =A  2
∣S  ∣AB

E(ψ  ) −A  ≤
2
ν

S  (ψ  ) ≤1 A E(ψ  ) +A  

2
ν

E(ψ  )A O(n )2

ν O(n)
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Entanglement vs Magic-dominated

Entanglement-dominated Magic-dominated

S  (ψ  ) =1 A ω(ν) S  (ψ  ) =1 A O(ν)
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Entanglement vs Magic-dominated

Entanglement-dominated Magic-dominated

Matrix Product States (MPS) are magic-dominated but allow potential efficient manipulation.

-compressible states ( ) occupy a vanishing fraction of the Hilbert space.

Entanglement-dominated phase is typical for -compressible and -doped states.

S  (ψ  ) =1 A ω(ν) S  (ψ  ) =1 A O(ν)

ν ν = o(n)

ν t
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Efficient entanglement characterization for entanglement-
dominated tasks
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Efficient entanglement characterization for entanglement-
dominated tasks

General Case: Entanglement characterization requires exponentially many measurements for large
.

Example: Testing for volume law  involves resolving .

n  A

f(n  ) ∼A n  A tr(ψ  ) =A
2 exp(−Ω(n  ))A
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Efficient entanglement characterization for entanglement-
dominated tasks

General Case: Entanglement characterization requires exponentially many measurements for large
.

Example: Testing for volume law  involves resolving .

Task: Aim is to check whether .

 is entanglement dominated iff 

n  A

f(n  ) ∼A n  A tr(ψ  ) =A
2 exp(−Ω(n  ))A

S  (ψ  ) =1 A Θ(f(n  ))A

ψ E(ψ  ) =A ω(ν)
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Efficient entanglement characterization for entanglement-
dominated tasks

General Case: Entanglement characterization requires exponentially many measurements for large
.

Example: Testing for volume law  involves resolving .

Task: Aim is to check whether .

 is entanglement dominated iff 

Given a entanglement class , if  then .

n  A

f(n  ) ∼A n  A tr(ψ  ) =A
2 exp(−Ω(n  ))A

S  (ψ  ) =1 A Θ(f(n  ))A

ψ E(ψ  ) =A ω(ν)

f(n  )A E(ψ  ) =A f(n  )A S  (ψ  ) =1 A cf(n  ) +A o(f(n  ))A
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Efficient entanglement characterization for entanglement-
dominated tasks

General Case: Entanglement characterization requires exponentially many measurements for large
.

Example: Testing for volume law  involves resolving .

Task: Aim is to check whether .

 is entanglement dominated iff 

Given a entanglement class , if  then .

Therefore, one estimates  up to a  relative error.

n  A

f(n  ) ∼A n  A tr(ψ  ) =A
2 exp(−Ω(n  ))A

S  (ψ  ) =1 A Θ(f(n  ))A

ψ E(ψ  ) =A ω(ν)

f(n  )A E(ψ  ) =A f(n  )A S  (ψ  ) =1 A cf(n  ) +A o(f(n  ))A
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.

Example: Testing for volume law  involves resolving .

Task: Aim is to check whether .

 is entanglement dominated iff 

Given a entanglement class , if  then .

Therefore, one estimates  up to a  relative error.

Notice that, the above procedure holds even for states with .
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Efficient entanglement characterization for entanglement-
dominated tasks

General Case: Entanglement characterization requires exponentially many measurements for large
.

Example: Testing for volume law  involves resolving .

Task: Aim is to check whether .

 is entanglement dominated iff 

Given a entanglement class , if  then .

Therefore, one estimates  up to a  relative error.

Notice that, the above procedure holds even for states with .

Example: Volume Law vs Sub-Volume Law

If  Volume law: .  Sub-volume law: .

n  A

f(n  ) ∼A n  A tr(ψ  ) =A
2 exp(−Ω(n  ))A

S  (ψ  ) =1 A Θ(f(n  ))A

ψ E(ψ  ) =A ω(ν)

f(n  )A E(ψ  ) =A f(n  )A S  (ψ  ) =1 A cf(n  ) +A o(f(n  ))A

S  (ψ  )1 A o(1)

ν = o(n)

f(n  ) =A n  A ⟹ c = Θ(1) c = o(1)   | 11 of 17



Efficient entanglement distillation for entanglement-dominated
task

Theorem There exists a bipartite Clifford unitary that distills a number of Bell pair equals to

which, for entanglement dominated states, is asymptotically (in ) optimal: 

 Moreover, the unitary, can be found by  queries to .

M  =+ E(ψ  ) −A ν/2

n M  /S  (ψ  ) =+ 1 A 1 −
o(1). O(n) ∣ψ⟩
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Efficient entanglement distillation for entanglement-dominated
task

Theorem There exists a bipartite Clifford unitary that distills a number of Bell pair equals to

which, for entanglement dominated states, is asymptotically (in ) optimal: 

 Moreover, the unitary, can be found by  queries to .

M  =+ E(ψ  ) −A ν/2

n M  /S  (ψ  ) =+ 1 A 1 −
o(1). O(n) ∣ψ⟩

Proof Sketch: , 

We can complete the stabilizer group  to a maximal one , describing a stabilizer state .

For  there exists a unitary  Clifford that distills up to  Bell pairs.

Applying the same unitary on , it transforms  obtaining  Bell pairs:

S = S  ∪A S  ∪B S  AB ∣S∣ ≥ n − ν

S Sc ∣S ⟩c

Sc U  ⊗A U  B ∣S  ∣/2AB
c

∣ψ⟩ S → S ′ M  +

M  ≥+  =
2

∣S  ∣ − νAB
E(ψ  ) −A ν/2
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Efficient entanglement dilution for entanglement-dominated task

Theorem For any state  in the ED phase there exists a stabilizer LOCC protocol for dilution that
requires a number of Bell pairs equal to

which, for entanglement dominated states, is asymptotically (in ) optimal: 

, and  bits of classical communication.

∣ψ⟩

M  =− E(ψ  ) +A ν/2

n M  /S  (ψ  ) =− 1 A 1 +
o(1) ν
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Efficient entanglement dilution for entanglement-dominated task

Proof Sketch :

 runs locally the distillation protocol.

Obtaining the state 

Teleport of  qubits of  to .

Application of local Cliffords on  and .

Equivalent to revert distillation.

Theorem For any state  in the ED phase there exists a stabilizer LOCC protocol for dilution that
requires a number of Bell pairs equal to

which, for entanglement dominated states, is asymptotically (in ) optimal: 

, and  bits of classical communication.

∣ψ⟩

M  =− E(ψ  ) +A ν/2

n M  /S  (ψ  ) =− 1 A 1 +
o(1) ν

B

∣σ ⟩′

ν/2 ∣σ ⟩′ A

A B
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No-go for magic dominated states

Theorem Any efficient state-agnostic protocol that can estimate  within  relative error

for all MD states. It can distills at most a fraction of  Bell pairs from a magic-dominated state,

and diluite more than a fraction of  Bell pairs from a magic-dominated state.

S  (ψ  )1 A ω(1)
o(1)

ω(1)
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No-go for magic dominated states

Theorem Any efficient state-agnostic protocol that can estimate  within  relative error

for all MD states. It can distills at most a fraction of  Bell pairs from a magic-dominated state,

and diluite more than a fraction of  Bell pairs from a magic-dominated state.

Proof Sketch: Pseudorandom states encoded as magic-states

Consider the following magic dominated state , with  with

Two possible choices either  is an Haar random state or  is a pseudo entangled state

Haar random states have maximal entropy of entanglement , while

, an efficient algorithm that achieves  fraction of distillable
Bell pairs would distinguish pseudo random states from Haar. Consequently, the maximal number
of extractable Bell pairs obeys 

S  (ψ  )1 A ω(1)
o(1)

ω(1)

∣ψ⟩ = ∣0⟩  ⊗n−ν ∣ϕ  ⟩  AB ν ν = Θ(log (n))c

c > 1

∣ϕ  ⟩  AB ν ∣ϕ  ⟩  AB ν

S  (ϕ  ) ∼1 AB
H Θ(log n)c

S  (ϕ  ) =1 AB
P Θ(log n)c′

M  /S  =+ 1 Ω(1)

M  /S  =+ 1 o(1)
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Computational phase transition in entanglement manipulation

Reversibility Ratio defined as 

Key Results

 for ED states

 for MD states

Proof outiline

Distillation: . Dilution: .

Significance of Reversibility Ratio

ED states: Reversible entanglement manipulation.
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Computational phase transition in entanglement manipulation

Reversibility Ratio defined as 

Key Results

 for ED states

 for MD states

Proof outiline

Distillation: . Dilution: .

Significance of Reversibility Ratio

ED states: Reversible entanglement manipulation.

MD states: Irreversible entanglement manipulation.

M  /M  + −

M  /M  =+ − 1 − o(1)

M  /M  =+ − o(1)

M  ≥+ S  (ψ;A∣B) −1 ν/2 M  ≤− E(ψ;A∣B) + ν/2
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Robustness of phases

Question: How robust are ED and MD phases to perturbations.

Stabilizer nullity is sensitive to perturbation, but we can make it robust.

  | 16 of 17
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Question: How robust are ED and MD phases to perturbations.

Stabilizer nullity is sensitive to perturbation, but we can make it robust.

ν  (ψ) =ϵ : min{ν(ϕ) : ∥∣ψ⟩⟨ψ∣ − ∣ϕ⟩⟨ϕ∣∥  ≤1 ε}

  | 16 of 17



Robustness of phases

Question: How robust are ED and MD phases to perturbations.

Stabilizer nullity is sensitive to perturbation, but we can make it robust.

-ED and -MD phases

ED phase: MD phase: 

Results on ED-phase and MD-phase can be generalized to this -version up to error .

Proof idea: Look at the -ball, and then use of Fannes inequality.

ν  (ψ) =ϵ : min{ν(ϕ) : ∥∣ψ⟩⟨ψ∣ − ∣ϕ⟩⟨ϕ∣∥  ≤1 ε}

ε ε

∣ψ  ⟩ =ε : argmin{ν(∣ϕ⟩) : ∥∣ψ⟩⟨ψ∣ − ∣ϕ⟩⟨ϕ∣∥  ≤1 ε}

S  (ψ  ) =1 ϵA ω(ν(∣ψ ⟩))ϵ S  (ψ  ) =1 ϵA O(ν(∣ψ  ⟩))ϵ

ε ε

ε
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Future directions

Generalizing the result to a more robust measure of magic?

A Computational phase transition in magic-state distillation?

From pseudomagic, we know that there is no-agnostic and efficient algorithm that distill more
than  magic states for general states.

Is the magic-dominated phase useful for agnostic and efficient magic-state distillation?

Generalization to the CV case. Analizing the connection between non-Gaussianity and
Entanglement.

O(logM(ψ))
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Future directions

Generalizing the result to a more robust measure of magic?

A Computational phase transition in magic-state distillation?

From pseudomagic, we know that there is no-agnostic and efficient algorithm that distill more
than  magic states for general states.

Is the magic-dominated phase useful for agnostic and efficient magic-state distillation?

Generalization to the CV case. Analizing the connection between non-Gaussianity and
Entanglement.

Thanks for your attention!

O(logM(ψ))
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