Magic-induced computational separation in entanglement theory

Salvatore F.E. Oliviero

Joint work with:

Andi Gu

l orenzo l eone

Talk based on: ArXiv: 2403.19610

MBQM 2024

What is the difference between high magic entanglement and low magic entanglement?

- What is the difference between high magic entanglement and low magic entanglement?
- For states with no magic, estimate entanglement is easy.

- What is the difference between high magic entanglement and low magic entanglement?
- For states with no magic, estimate entanglement is easy.
- Operational approach: let us study the difference for entanglement characterization and manipulation tasks.

Measures of Entanglement and Magic

How do we measure entanglement?

- Bipartition in a qubit system. A|B
- Reduced density matrix $\psi_A = \mathrm{tr}_B \ket{\psi}\!\!ig\langle\psi|$
- von Neumann entropy:

 $S_1(\psi_A) = -\operatorname{tr}(\psi_A \log \psi_A)$

Measures of Entanglement and Magic

How do we measure entanglement?

- Bipartition in a qubit system. A|B
- Reduced density matrix $\psi_A = \mathrm{tr}_B \ket{\psi}\!\!ig\langle\psi|$
- von Neumann entropy:

$$S_1(\psi_A) = -\operatorname{tr}(\psi_A \log \psi_A)$$

How do we measure magic?

- Group of Pauli operators $P\in\mathcal{P}_n$
- Pauli subgroup $\mathit{stabilizing} \ket{\psi}$

$$G_\psi = \{P: P|\psi
angle = |\psi
angle\}$$

Stabilizer nullity

$$\nu(\psi) = n - \log |G_\psi|$$

Entanglement manipulation

Task: via LOCC Alice and Bob want to distill a Bell pair from an entangled state $|\psi\rangle$

 For pure states the optimal number of Bell pair is the von Neumann entropy

$$M_+=S_1(\psi_A)$$

Task: via LOCC Alice and Bob want to distill a state $|\psi\rangle$

 For pure states the optimal number of Bell pair is the von Neumann entropy

$$M_-=S_1(\psi_A)$$

Stabilizer States

• Consider k mutually commuting, and independent Pauli operators $S = \{P_1, \ldots, P_k\}$.

$$\sigma = \prod_{P \in S} rac{I+P}{2}$$

• S is the generating set of the stabilizer group G (abelian subgroup of \mathcal{P}_n) associated with σ .

$$|G| = 2^{|S|} = 2^k$$

- Pure stabilizer states $|\sigma
 angle$ $orall P\in G$, $P|\sigma
 angle=|\sigma
 angle.$
- All the properties of σ can be determined by looking at S.

Entanglement for stabilizer states

- Entanglement is completely determined by S.
- $S_A = \{P \in S | P = P_A \otimes I_B\}$
- $S_A = \{P \in S | P = I_A \otimes P_B\}$
- $S_{AB}=\{P\in S|P\notin S_A\cup S_B\}$

Fattal et al., Entanglement in the stabilizer formalism, ArXiv:quant-ph/0406168

Magic-States = ν -compressible states

- Consider a state $|\psi
 angle$ with stabilizer nullity u.
- We can associate a stabilizer group *G* generated by *S*.

$$|\psi
angle\!\langle\psi|=\sum_{i=1}^{4^
u}{
m tr}(h_i\psi)h_i\prod_{P\in S}rac{I+P}{2}$$

- $|\psi
 angle$ is u-compressible because it can always be written as $|\psi
 angle=C(|0
 angle_{nu}\otimes|\phi
 angle_{
 u})$
- **Fact:** the stabilizer group *G* can be learned efficiently.

Leone et al., *Learning t-doped stabilizer states*, Quantum 8, 1361 (2024).

Learning algorithm for ${\boldsymbol{G}}$

Algorithm:

Input $O((n+\log(1/\delta))\epsilon)$ copies of $\ket{\psi}$, $\epsilon,\delta\in(0,1)$

Output Stabilizer set \hat{S} .

1. Perform Bell difference Sampling. The span of the samples is S^{\perp}

2. $S=\operatorname{Ker}(S^{\perp})$ (Gaussian Elimination)

Grewal et al., Efficient Learning of Quantum States Prepared With Few Non-Clifford Gates, ArXiv: 23

Learning algorithm for ${\boldsymbol{G}}$

Algorithm:

Input $O((n+\log(1/\delta))\epsilon)$ copies of $\ket{\psi}$, $\epsilon,\delta\in(0,1)$

Output Stabilizer set \hat{S} .

1. Perform Bell difference Sampling. The span of the samples is S^{\perp}

2. $S = \operatorname{Ker}(S^{\perp})$ (Gaussian Elimination)

Grewal et al., Efficient Learning of Quantum States Prepared With Few Non-Clifford Gates, ArXiv: 23

Learning algorithm for ${\cal G}$

Algorithm:

Input $O((n+\log(1/\delta))\epsilon)$ copies of $\ket{\psi}$, $\epsilon,\delta\in(0,1)$

Output Stabilizer set \hat{S} .

1. Perform Bell difference Sampling. The span of the samples is S^{\perp}

2. $S=\operatorname{Ker}(S^{\perp})$ (Gaussian Elimination)

- The group $\hat{G}\equiv \langle \hat{S}
 angle$ contains G.
- $|\psi
 angle$ is ϵ -close in trace distance to some state with a stabilizer group $\hat{G}.$
- Runtime $O(n^2(n+\log(1/\delta))\epsilon)$

Grewal et al., Efficient Learning of Quantum States Prepared With Few Non-Clifford Gates, ArXiv: 23

- Let $|\psi
 angle$ be a state with stabilizer nullity u, stabilizer group G and generating set S.
- One can always decompose S on the bipartition A|B: $S = S_A \cup S_B \cup S_{AB}$

- Let $|\psi
 angle$ be a state with stabilizer nullity u, stabilizer group G and generating set S.
- One can always decompose S on the bipartition A|B: $S = S_A \cup S_B \cup S_{AB}$

Stabilizer Entanglement $E(\psi_A) = rac{|S_{AB}|}{2}$

- Let $|\psi
 angle$ be a state with stabilizer nullity u, stabilizer group G and generating set S.
- One can always decompose S on the bipartition A|B: $S = S_A \cup S_B \cup S_{AB}$

Stabilizer Entanglement $E(\psi_A) = rac{|S_{AB}|}{2}$

Bounds with entanglement entropy

- Let $|\psi
 angle$ be a state with stabilizer nullity u, stabilizer group G and generating set S.
- One can always decompose S on the bipartition A|B: $S = S_A \cup S_B \cup S_{AB}$

Stabilizer Entanglement $E(\psi_A) = rac{|S_{AB}|}{2}$

Bounds with entanglement entropy

$$E(\psi_A)-rac{
u}{2}\leq S_1(\psi_A)\leq E(\psi_A)+rac{
u}{2}$$

- Let $|\psi
 angle$ be a state with stabilizer nullity u, stabilizer group G and generating set S.
- One can always decompose S on the bipartition A|B: $S = S_A \cup S_B \cup S_{AB}$

Stabilizer Entanglement $E(\psi_A) = rac{|S_{AB}|}{2}$

Bounds with entanglement entropy

$$E(\psi_A)-rac{
u}{2}\leq S_1(\psi_A)\leq E(\psi_A)+rac{
u}{2}$$

- $E(\psi_A)$ can be estimated efficiently $O(n^2)$
- ν can be estimated efficiently O(n)

Entanglement-dominated

 $S_1(\psi_A)=\omega(
u)$

Magic-dominated

$$S_1(\psi_A)=O(
u)$$

Matrix Product States (MPS) are magic-dominated but allow potential efficient manipulation.

- Matrix Product States (MPS) are magic-dominated but allow potential efficient manipulation.
- ν -compressible states ($\nu = o(n)$) occupy a vanishing fraction of the Hilbert space.

- Matrix Product States (MPS) are magic-dominated but allow potential efficient manipulation.
- ν -compressible states ($\nu = o(n)$) occupy a vanishing fraction of the Hilbert space.
- Entanglement-dominated phase is typical for ν -compressible and t-doped states.

- General Case: Entanglement characterization requires exponentially many measurements for large n_A .
 - Example: Testing for volume law $f(n_A) \sim n_A$ involves resolving ${
 m tr}(\psi_A^2) = \exp(-\Omega(n_A)).$

- General Case: Entanglement characterization requires exponentially many measurements for large n_A .
 - Example: Testing for volume law $f(n_A) \sim n_A$ involves resolving ${
 m tr}(\psi_A^2) = \exp(-\Omega(n_A)).$
- Task: Aim is to check whether $S_1(\psi_A) = \Theta(f(n_A)).$

- General Case: Entanglement characterization requires exponentially many measurements for large n_A .
 - Example: Testing for volume law $f(n_A) \sim n_A$ involves resolving ${
 m tr}(\psi_A^2) = \exp(-\Omega(n_A)).$
- Task: Aim is to check whether $S_1(\psi_A) = \Theta(f(n_A)).$
- ψ is entanglement dominated iff $E(\psi_A) = \omega(
 u)$

- General Case: Entanglement characterization requires exponentially many measurements for large n_A .
 - Example: Testing for volume law $f(n_A) \sim n_A$ involves resolving ${
 m tr}(\psi_A^2) = \exp(-\Omega(n_A)).$
- Task: Aim is to check whether $S_1(\psi_A) = \Theta(f(n_A)).$
- ψ is entanglement dominated iff $E(\psi_A) = \omega(
 u)$
- Given a entanglement class $f(n_A)$, if $E(\psi_A) = f(n_A)$ then $S_1(\psi_A) = cf(n_A) + o(f(n_A))$.

- General Case: Entanglement characterization requires exponentially many measurements for large n_A .
 - Example: Testing for volume law $f(n_A) \sim n_A$ involves resolving ${
 m tr}(\psi_A^2) = \exp(-\Omega(n_A)).$
- Task: Aim is to check whether $S_1(\psi_A) = \Theta(f(n_A)).$
- ψ is entanglement dominated iff $E(\psi_A) = \omega(
 u)$
- Given a entanglement class $f(n_A)$, if $E(\psi_A) = f(n_A)$ then $S_1(\psi_A) = cf(n_A) + o(f(n_A))$.
- Therefore, one estimates $S_1(\psi_A)$ up to a o(1) relative error.

- General Case: Entanglement characterization requires exponentially many measurements for large n_A .
 - Example: Testing for volume law $f(n_A) \sim n_A$ involves resolving ${
 m tr}(\psi_A^2) = \exp(-\Omega(n_A)).$
- Task: Aim is to check whether $S_1(\psi_A) = \Theta(f(n_A)).$
- ψ is entanglement dominated iff $E(\psi_A) = \omega(
 u)$
- Given a entanglement class $f(n_A)$, if $E(\psi_A) = f(n_A)$ then $S_1(\psi_A) = cf(n_A) + o(f(n_A))$.
- Therefore, one estimates $S_1(\psi_A)$ up to a o(1) relative error.
- Notice that, the above procedure holds even for states with u = o(n).

- General Case: Entanglement characterization requires exponentially many measurements for large n_A .
 - Example: Testing for volume law $f(n_A) \sim n_A$ involves resolving ${
 m tr}(\psi_A^2) = \exp(-\Omega(n_A)).$
- Task: Aim is to check whether $S_1(\psi_A) = \Theta(f(n_A)).$
- ψ is entanglement dominated iff $E(\psi_A) = \omega(
 u)$
- Given a entanglement class $f(n_A)$, if $E(\psi_A)=f(n_A)$ then $S_1(\psi_A)=cf(n_A)+o(f(n_A)).$
- Therefore, one estimates $S_1(\psi_A)$ up to a o(1) relative error.
- Notice that, the above procedure holds even for states with u = o(n).
- Example: Volume Law vs Sub-Volume Law
 - If $f(n_A)=n_A \implies$ Volume law: $c=\Theta(1)$. Sub-volume law: c=o(1).

Efficient entanglement distillation for entanglement-dominated task

Theorem There exists a bipartite Clifford unitary that distills a number of Bell pair equals to

$$M_+=E(\psi_A)-
u/2$$

which, for entanglement dominated states, is asymptotically (in n) optimal: $M_+/S_1(\psi_A)=1-o(1)$. Moreover, the unitary, can be found by O(n) queries to $|\psi\rangle$.

Efficient entanglement distillation for entanglement-dominated task

Theorem There exists a bipartite Clifford unitary that distills a number of Bell pair equals to

$$M_+=E(\psi_A)-
u/2$$

which, for entanglement dominated states, is asymptotically (in n) optimal: $M_+/S_1(\psi_A)=1-o(1)$. Moreover, the unitary, can be found by O(n) queries to $|\psi\rangle$.

Proof Sketch: $S = S_A \cup S_B \cup S_{AB}$, $|S| \ge n -
u$

- We can complete the stabilizer group S to a maximal one S^c , describing a stabilizer state $|S^c\rangle$.
- For S^c there exists a unitary $U_A \otimes U_B$ Clifford that distills up to $|S^c_{AB}|/2$ Bell pairs.
- Applying the same unitary on $|\psi
 angle$, it transforms S o S' obtaining M_+ Bell pairs:

$$M_+ \geq rac{|S_{AB}|-
u}{2} = E(\psi_A)-
u/2$$
 . The second s

12 of 17

Efficient entanglement dilution for entanglement-dominated task

Theorem For any state $|\psi\rangle$ in the ED phase there exists a stabilizer LOCC protocol for dilution that requires a number of Bell pairs equal to

$$M_-=E(\psi_A)+
u/2$$

which, for entanglement dominated states, is asymptotically (in n) optimal: $M_-/S_1(\psi_A)=1+o(1)$, and u bits of classical communication.

Efficient entanglement dilution for entanglement-dominated task

Theorem For any state $|\psi\rangle$ in the ED phase there exists a stabilizer LOCC protocol for dilution that requires a number of Bell pairs equal to

$$M_-=E(\psi_A)+
u/2$$

which, for entanglement dominated states, is asymptotically (in n) optimal: $M_-/S_1(\psi_A)=1+o(1)$, and u bits of classical communication.

Proof Sketch :

- B runs locally the distillation protocol. Obtaining the state $|\sigma'
 angle$
- Teleport of u/2 qubits of $|\sigma'
 angle$ to A.
- Application of local Cliffords on A and B.
 Equivalent to revert distillation.

No-go for magic dominated states

Theorem Any efficient state-agnostic protocol that can estimate $S_1(\psi_A)$ within $\omega(1)$ relative error for all MD states. It can distills at most a fraction of o(1) Bell pairs from a magic-dominated state, and diluite more than a fraction of $\omega(1)$ Bell pairs from a magic-dominated state.

No-go for magic dominated states

Theorem Any efficient state-agnostic protocol that can estimate $S_1(\psi_A)$ within $\omega(1)$ relative error for all MD states. It can distills at most a fraction of o(1) Bell pairs from a magic-dominated state, and diluite more than a fraction of $\omega(1)$ Bell pairs from a magic-dominated state.

Proof Sketch: Pseudorandom states encoded as magic-states

- Consider the following magic dominated state $|\psi
 angle=|0
 angle_{nu}\otimes|\phi_{AB}
 angle_{
 u}$, with $u=\Theta(\log^c(n))$ with c>1
- Two possible choices either $|\phi_{AB}\rangle_{\nu}$ is an Haar random state or $|\phi_{AB}\rangle_{\nu}$ is a pseudo entangled state
- Haar random states have maximal entropy of entanglement $S_1(\phi^H_{AB}) \sim \Theta(\log^c n)$, while $S_1(\phi^P_{AB}) = \Theta(\log^{c'} n)$, an efficient algorithm that achieves $M_+/S_1 = \Omega(1)$ fraction of distillable Bell pairs would distinguish pseudo random states from Haar. Consequently, the maximal number of extractable Bell pairs obeys $M_+/S_1 = o(1)$

- Reversibility Ratio defined as M_+/M_-

- Reversibility Ratio defined as M_{+}/M_{-}
- Key Results
 - $M_+/M_-=1-o(1)$ for ED states
 - $M_+/M_-=o(1)$ for MD states

- Reversibility Ratio defined as M_{+}/M_{-}
- Key Results
 - $M_+/M_-=1-o(1)$ for ED states
 - $M_+/M_-=o(1)$ for MD states
- Proof outiline
 - Distillation: $M_+ \geq S_1(\psi;A|B)
 u/2.$ Dilution: $M_- \leq \mathcal{E}(\psi;A|B) +
 u/2.$

- Reversibility Ratio defined as M_{+}/M_{-}
- Key Results
 - $M_+/M_-=1-o(1)$ for ED states
 - $M_+/M_-=o(1)$ for MD states
- Proof outiline
 - Distillation: $M_+ \geq S_1(\psi;A|B)
 u/2.$ Dilution: $M_- \leq \mathcal{E}(\psi;A|B) +
 u/2.$
- Significance of Reversibility Ratio

- Reversibility Ratio defined as M_{+}/M_{-}
- Key Results
 - $M_+/M_-=1-o(1)$ for ED states
 - $M_+/M_-=o(1)$ for MD states
- Proof outiline
 - Distillation: $M_+ \geq S_1(\psi;A|B)
 u/2$. Dilution: $M_- \leq \mathcal{E}(\psi;A|B) +
 u/2$.
- Significance of Reversibility Ratio
- ED states: Reversible entanglement manipulation.

- Reversibility Ratio defined as M_{+}/M_{-}
- Key Results
 - $M_+/M_-=1-o(1)$ for ED states
 - $M_+/M_-=o(1)$ for MD states
- Proof outiline
 - Distillation: $M_+ \geq S_1(\psi;A|B)
 u/2.$ Dilution: $M_- \leq \mathcal{E}(\psi;A|B) +
 u/2.$
- Significance of Reversibility Ratio
- ED states: Reversible entanglement manipulation.
- MD states: Irreversible entanglement manipulation.

- **Question**: How robust are ED and MD phases to perturbations.
- Stabilizer nullity is sensitive to perturbation, but we can make it robust.

- **Question**: How robust are ED and MD phases to perturbations.
- Stabilizer nullity is sensitive to perturbation, but we can make it robust.

 $u_\epsilon(\psi) := \min\{
u(\phi): \||\psi
angle\!\langle\psi| - |\phi
angle\!\langle\phi|\|_1 \le arepsilon\}$

- **Question**: How robust are ED and MD phases to perturbations.
- Stabilizer nullity is sensitive to perturbation, but we can make it robust.

 $u_\epsilon(\psi) \coloneqq \min\{
u(\phi): \||\psi
angle\!\langle\psi| - |\phi
angle\!\langle\phi|\|_1 \le arepsilon\}$

- ε -ED and ε -MD phases
 - $\bullet \hspace{0.1 in} |\psi_{\varepsilon}\rangle \coloneqq \operatorname{argmin}\{\nu(|\phi\rangle) \colon \||\psi\rangle\!\langle\psi| |\phi\rangle\!\langle\phi|\|_{1} \leq \varepsilon\}$
 - ED phase: $S_1(\psi_{\epsilon A}) = \omega(
 u(|\psi_\epsilon
 angle))$ MD phase: $S_1(\psi_{\epsilon A}) = O(
 u(|\psi_\epsilon
 angle))$
- Results on ED-phase and MD-phase can be generalized to this ε -version up to error ε .
- **Proof idea**: Look at the ε -ball, and then use of Fannes inequality.

Future directions

- Generalizing the result to a more robust measure of magic?
- A Computational phase transition in magic-state distillation?
 - From pseudomagic, we know that there is no-agnostic and efficient algorithm that distill more than $O(\log M(\psi))$ magic states for general states.
 - Is the magic-dominated phase useful for agnostic and efficient magic-state distillation?
- Generalization to the CV case. Analizing the connection between non-Gaussianity and Entanglement.

Future directions

- Generalizing the result to a more robust measure of magic?
- A Computational phase transition in magic-state distillation?
 - From pseudomagic, we know that there is no-agnostic and efficient algorithm that distill more than $O(\log M(\psi))$ magic states for general states.
 - Is the magic-dominated phase useful for agnostic and efficient magic-state distillation?
- Generalization to the CV case. Analizing the connection between non-Gaussianity and Entanglement.

Thanks for your attention!